

ALGODOO

Simulación de experimentos físicos

MINISTERIO DE EDUCACIÓN, FORMACIÓN PROFESIONAL Y DEPORTES

Dirección General de Evaluación y Cooperación Territorial Instituto Nacional de Tecnologías Educativas y de Formación del Profesorado (INTEF) Recursos Educativos Digitales

Mayo 2025

NIPO (web) 164-24-014-5

ISSN (web) 2695-4176

DOI (web) 10.4438/2695-4176_OTE_2019_847-19-121-5

NIPO (formato html) 164-24-012-4

NIPO (formato pdf) 164-24-013-X

DOI (formato pdf) 10.4438/OTE130_2025

Algodoo: Simulación de experimentos físicos.

Por Jesús Jaime Rodrigo López para INTEF https://intef.es

Obra publicada con licencia de Creative Commons

Reconocimiento-Compartir Igual 4.0 Licencia Internacional.

https://creativecommons.org/licenses/by-sa/4.0/

Para cualquier asunto relacionado con esta publicación contactar con: Instituto Nacional de Tecnologías Educativas y de Formación del Profesorado C/Torrelaguna, 58. 28027 Madrid.

Tfno.: 91-377 83 00. Fax: 91-368 07 09

Correo electrónico: recursos.educativos@educacion.gob.es

Jesús Rodrigo López

Jesús Rodrigo López, de formación Ingeniero de Minas, es profesor de Tecnología en la Comunidad de Madrid y ha desempeñado un cargo de asesor técnico docente relacionado con la competencia digital. Cuenta con la habilitación en lengua inglesa y esto le ha dirigido en los últimos años a procurar material que se pueda utilizar indistintamente en varios idiomas.

@Miner_jesus

Introducción

Algodoo es un programa de simulación de elementos físicos que posibilita el diseño, construcción y funcionamiento de sistema complejos. En este artículo se verá su aplicación para la construcción de sistemas mecánicos.

La Herramienta

Ilustración 1 Algodoo

Algodoo permite la simulación de diversos elementos de la Física en un entorno visualmente atractivo, con colores vivos y efectos realistas. Se puede jugar con poleas, engranajes, etc., cambiar sus radios, sentidos de giro y así poder introducir sencillos cálculos en los sistemas propuestos.

La descarga del programa está disponible para Windows y para Mac; está presente también en el App Store para su uso en Ipad. Página de descarga: <u>Download « Algodoo</u>

La interfaz de Algodoo permite la utilización de diversos idiomas, lo que viene muy bien en los currículos de enseñanzas bilingües. Con un acercamiento simple en apariencia, el usuario puede dibujar e interactuar con sistemas físicos desde su equipo informático: construir y explorar, con acciones de clicar y arrastrar, inclinar y agitar, etc. La utilización de colores, gráficos, fuerzas y otros elementos constituirán una experiencia visual muy atrayente.

Explicación del uso en el ámbito educativo

Los saberes relacionados con los mecanismos requieren de un apoyo visual para su correcto entendimiento y son muy agradecidos cuando se utilizan en proyectos de taller. Sin embargo, no siempre se dispone de los medios materiales ni del tiempo necesarios para su implementación.

Con Algodoo se pueden proponer situaciones de aprendizaje que requieran del uso de mecanismos; los alumnos serán capaces de probar distintos diseños, *sufrirán* las contrariedades de algunas incongruencias planteadas y alcanzarán su solución definitiva a través de la experimentación.

Las aplicaciones didácticas de Algodoo son múltiples:

- ▶ Apoyo para el profesor durante las explicaciones
- ▶ Herramienta de diseño para los proyectos abiertos (sin solución dirigida) de los alumnos
- Como consecuencia de lo anterior, se puede utilizar perfectamente en APB, pues deja un amplio margen a la creatividad y a la imaginación

Metodología y Didáctica Aplicada

Aquí, sin embargo, vamos a mostrar una utilización más concreta e inmediata pues en la asignatura de Tecnología y Digitalización se puede partir de un **reto**.

Un muñeco ha de asomar y esconderse repetidamente; para ello se puede dar una parte del proyecto completo, sin mostrar la solución:

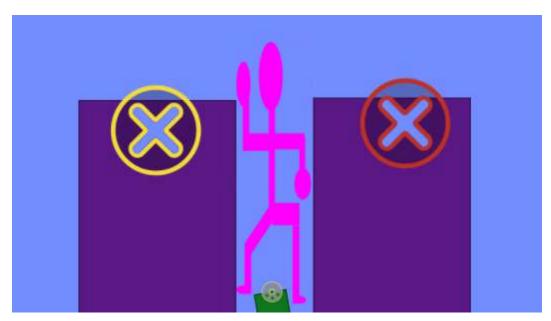
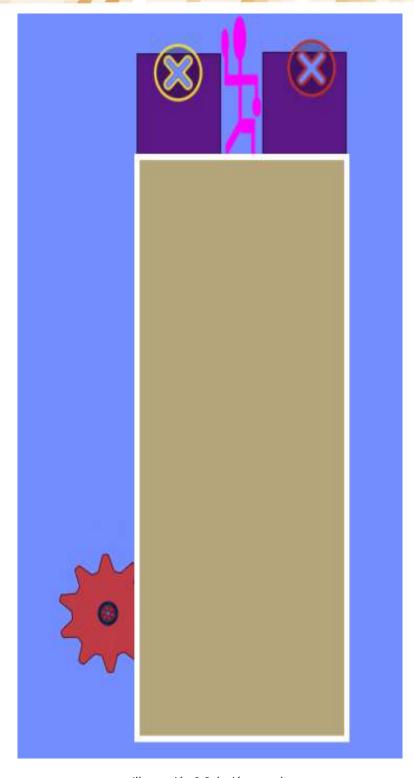
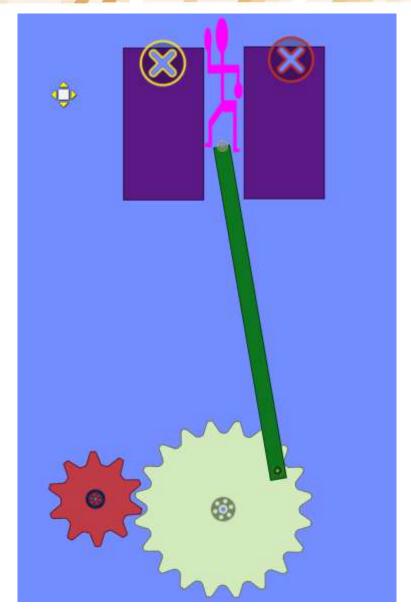



Ilustración 2 El reto


El muñeco ha de tener un movimiento rectilínea vertical alternativo.

El motor de todo el sistema será una rueda dentada (en el diseño mostrado viene en rojo; se ha tapado la solución con una plancha marrón):

Illustración 3 Solución tapada

Se sugiere la utilización de una pareja de engranajes combinado con un sistema de biela, manivela y corredera. Esta sería una de las posibles soluciones:

Illustración 4 Una posible solución

En los siguientes vídeos publicados en el repositorio de la Comunidad de Madrid para docentes se pueden apreciar mejor los diseños:

- Movimiento rectilíneo.
- Sistema de engranajes.

Ampliación que se pueden proponer en clase:

- Si se desea ir más allá en el diseño se puede requerir la siguiente condición: el monigote ha de asomarse 30 veces cada minuto. Esto obliga a fijar una determinada velocidad en la rueda motriz (la roja).
- ► También se puede exigir una determinada carrera (desplazamiento vertical del monigote) utilizando la información de escala mostrada en la pantalla:

Illustración 5 Con escala de medidas

Valoración Personal

El taller siempre había sido el alma de la asignatura de Tecnología, donde se podía dar rienda suelta a la imaginación y a la experimentación. Desgraciadamente cada vez está más complicado realizar actividades del tipo manos a la obra y este tipo de programas simuladores vienen a suplir esa carencia con todas las ventajas que implican: economía de recursos, facilidad de experimentación, etc.

Los tipos de actividades que se pueden proponer son muy variados y permiten llegar a las expectativas y capacidades de la gran diversidad de alumnos presentes en el aula.

Con este programa el alumno puede visualizar fácilmente el funcionamiento de los mecanismos básicos que previamente habrá estudiado.

Además, Algodoo es una herramienta muy útil para la explicación por parte del profesor pues, como ya se ha comentado previamente, en el tema de los mecanismos es muy importante el apoyo visual.

Recomendación final

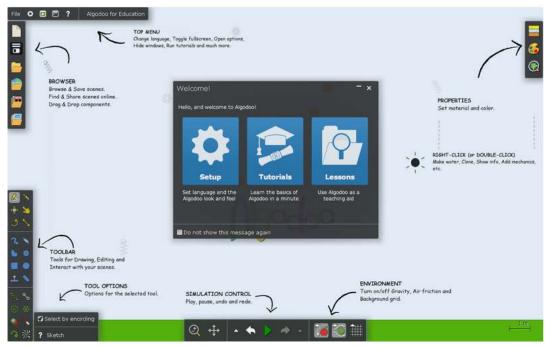
Debería ser una máxima en el Área de Tecnología: ningún contenido sin experimentar. Si no puede ser con las manos, al menos que sea con simuladores.

Algodoo viene con tutoriales muy completos y es altamente recomendable verlos para poder empezar a trabajar pues las posibilidades que ofrece el programa son muchísimas. Es fundamental saber desenvolverse con los diseños de ruedas y engranajes, ejes de giro, fijaciones en el espacio (o evitar el tener en cuenta la gravedad, etc.)



Información y materiales complementarios

Página de descarga de la herramienta: <u>Download « Algodoo</u>


Algodoo trae también incorporada mucha información adicional:

Lecciones (en inglés)

Illustración 6 Lecciones de Algodoo

Pequeños tutoriales (se ofrecen al abrir el programa):

Illustración 7 Pantalla de bienvenida

Webinarios:

- https://youtu.be/xfJrH3s9B9k
- https://youtu.be/Fd9W89hpm9U
- https://youtu.be/6ieDvS8PFIU

Ayuda contextual en las herramientas

Aparte, hay una amplia disponibilidad de vídeos en YouTube.

Otras aplicaciones de simulación

En el ámbito de la simulación por ordenador se encuentran, por ejemplo:

Tinkercad: inicialmente conocida por su facilidad para crear figuras para imprimir en 3D, incluye una completa herramienta de creación y testeo de circuitos electrónicos y una simulación de movimiento en los diseños.

The Bridge Designer: completo simulador de construcción de puentes de armadura de acero, con restricciones de presupuesto económico y pruebas de carga.

Derechos de uso

- ► Todas las marcas nombradas en el artículo son nombres y/o marcas registradas por sus correspondientes propietarios.
- Las imágenes han sido proporcionadas por el autor (CC BY-SA). Algunas de ellas corresponden a capturas de pantalla de la herramienta.

